A NOVEL PROCEDURE FOR THE PREPARATION OF 3-SUBSTITUTED 4-HYDROXYPYRAZOLE-5-CARBOXYLIC ACIDS AS AN APPROACH TO PYRAZOMYCIN

J. Farkaš and Z. Flegelová

Institute of Organic Chemistry and Biochemistry Czechoslovak Academy of Sciences, Prague

(Received in UK 23 March 1971; accepted for publication 1 April 1971)

As a part of our program directed toward the synthesis of C-nucleosides we have devised a general method for the synthesis of 3-substituted 4-hydroxy-pyrazole-5-carboxylic acids as a route to pyrazomycin¹.

We have found that α-keto ester 2-carboalkoxymethylhydrazones undergo the Dieckmann reaction² to give 4-hydroxypyrazole-5-carboxylic acids. (In an analogous manner, some derivatives of β-hydroxypyrrole³ and β-hydroxythio-phene⁴ have been prepared.) The starting hydrazones Ia-If were obtained by treatment of appropriate methyl or ethyl α-ketocarboxylic acid esters with ethyl hydrazinoacetate (preparation of Ia, Ic and If), with (1-methylhydrazino)-acetic acid or with (1-phenylhydrazino)acetic acid, followed by esterification with diazomethane (preparation of Ib and Id, Ie, resp.), as chromatographically homogenous oils. The Dieckmann cyclisation of Ia-If into 4-hydroxypyrazole-5-carboxylic acid esters IIa-IIf was carried out by refluxing 0.01 mole of

the starting hydrazones in 40 ml 0.5 N sodium ethoxide in ethanol for two hours. After neutralisation of the reaction mixture, the product was isolated on a column of silicagel. UV spectra of IIa-IIf exhibit a characteristic bathochromic shift due to formation of the enolate ion. The IR spectra of IIa-IIf

TABLE

Physical Properties of Ethyl 3-Substituted 4-Hydroxypyrazole-5-carboxylates

Comp.	Yield Melting point & max in nm			(log ε)	IR (CHCl ₃) V in cm			cm-l
	<u>%</u>	°C (solvent)	O.1 N HCl	O.1 N NaOH	(C=O) ^a	(C=Q) _P	(OH)	(NH)
IIa	50	174-175 water	224 (3.87) 273 (3.75)	237 (3.83) 317 (3.87)	1692	1722	3539	3448
IIÞ	52 eth	34-35 er-p.ether ^c	235 (4.01) 279 (3.79)	242 (3.86) 323 (3.87)	1676	1725	3521 3400	
IIc	39 eth	171-172 er-p.ether ^c	218 (4.22) ^d 237 (4.20) 281 (3.90)	228 (4.15) 333 (3.95)	1693	1720i	3440 3370	3390 3100
IId		l distilled 120 (0.05 mm		251 (3.83) 331 (4.06)	1671	1721 1731	3505 3380	
IIe	85	95-97 p.ether ^c	225 (4.23) ^d 240 (4.19) 304 (3.98)	228 (4.23) 347 (4.10)	1673	1720 1737	3480 3330	
II f	10%	124-125 aq. acetic acid	223 (3.84) 272 (3.70)	237 (3.80) 320 (3.91)	1687	1721i	3525	3450 3140

^aEnolic β -keto ester. ^bNon-enolic β -keto ester. ^cPetroleum ether b.p. $60-70^{\circ}$ C. ^dMeasured in 0.1 N HCl in 10% ethanol.

provide evidence of keto-enol equilibria in chloroform solution, with prevailing enol form. IIa-IIf give a positive ferric chloride test.

All compounds described gave satisfactory elemental analyses and their mass spectra fragmentation patterns are compatible with the assigned structures.

REFERENCES

- R.J. Suhadolnik, Nucleoside Antibiotics, Wiley-Interscience, New York 1970, p. 390.
- 2. J.P. Schaefer and J.J. Bloomfield, Organic Reactions 15, 1 (1967).
- 3. A. Treibs and A. Ohorodnik, Ann. 611, 139 (1958).
- 4. H. Fiesselmann and P. Schipprak, Chem. Ber. 89, 1897 (1956).